The Crystal Structures of Two Polymorphs of Dichlorobis(pyridine)cobalt(II)

By Peter J. Clarke* and H. Judith Milledge
William Ramsay, Ralph Forster and Christopher Ingold Laboratories, University College London, Gower Street, London WC1E 6BT, England

(Received 17 October 1974; accepted 13 January 1975)

Abstract

Crystal structures have been determined for two polymorphs of dichlorobis(pyridine)cobalt(II) which are related via a reversible solid-state phase transformation at about 150 K . Above this temperature, the well known α-form is more stable and below it, the previously unknown γ-form occurs. Crystal data are: α-form (294 K) $a=34.486$ (3), $b=17.408$ (2), $c=3.6635$ (6) $\AA, \gamma=90.121$ (6) ${ }^{\circ}, Z=8$, monoclinic $C 2 / b$ (c unique); γ-form (89 K) $a=17.437$ (13), $b=8.408$ (2), $c=3.593$ (7) $\AA, \beta=90.05$ (5) ${ }^{\circ}, Z=2$, monoclinic $P 2_{1} / n$ (b unique). Intensity data for the α-form were collected by the equi-inclination Weissenberg technique and for the γ-form by the general inclination Weissenberg method. The structures were refined by full-matrix least-squares calculations. The R values for α - and γ-forms based on 886 and 368 reflexions were 11.4 and 9.8% respectively. Both crystal structures contain polymeric chains linked by cobalt-chlorine bridging bonds leading to an octahedral environment for the cobalt atoms. The two crystal structures represent two modes of packing of the pyridine rings within the framework formed by the cobalt-chlorine chains.

Introduction

Dichlorobis(pyridine)cobalt(II), $\mathrm{CoCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$, (hereinafter COPYCL) exhibits three polymorphs within the temperature range 89 to 400 K . The violet or $\alpha-$ form was first prepared by Reitzenstein (1894) by reacting pyridine with a solution of cobalt chloride in ethanol and allowing crystals to grow at room temperature. Hantzsch (1927) prepared blue crystals of a second polymorph, β-COPYCL, by crystallization from a hot ethanolic solution of COPYCL. From magnetic data, Mellor \& Coryell (1938) assigned a polymeric octahedrally coordinated structure to α-COPYCL, and a monomeric tetrahedrally coordinated structure to β-COPYCL. These conclusions were later supported by the crystallographic work of Dunitz (1957), Ferroni \& Bondi (1958), and Porai-Koshits, Atovmayan \& Tischenko (1960).

Recently, the existence of a third, low-temperature, polymorph has been demonstrated by magnetic anisotropy and preliminary crystallographic studies carried out on α-COPYCL at 150 K (Bentley, 1968; Bentley, Gerloch, Lewis \& Quested, 1971; Thomas, 1969). We now report a re-examination of the crystal structure of α-COPYCL together with the crystal structure determination of the new low-temperature polymorph which we designate γ-COPYCL. Observations on the reversible solid-state phase transformation occurring between the α - and γ-forms at about 150 K are discussed in the following paper (Clarke \& Milledge, 1975).

Crystal structure analysis of α-COPYCL at 294 K

The crystal structure of α-COPYCL has previously been determined independently by Dunitz (1957) and

[^0]Ferroni \& Bondi (1958). These authors reached broadly the same conclusions, but differed in detail as discussed by Ferroni \& Bondi. However, both analyses were directed toward the demonstration of octahedral coordination in the complex rather than the derivation of an accurate crystal structure and hence the crystal structure of α-COPYCL was redetermined during the present study in order to allow meaningful comparisons to be made between the α - and γ-forms. The redetermination of the α-COPYCL structure also allowed the examination of criticisms made by Dorn-berger-Schiff $(1965,1966)$ of the earlier crystallographic work on this compound.

Collection and processing of intensity data

Violet-pink needle crystals of α-COPYCL were grown from a saturated ethanolic solution of COPYCL at room temperature under anhydrous conditions to avoid decomposition (Gill \& Nyholm, 1961). The crystals were dichroic, and yielded biaxial interference figures. Preliminary oscillation and Weissenberg photo-

Table 1. Crystal data for $\alpha-C O P Y C L$

	$a(\AA)$	b (\AA)	$c(\AA)$	$\gamma\left({ }^{\circ}\right)$
Dunitz				
(1957)	$34 \cdot 42$	17.38	3.66	$90 \cdot 0$
Ferroni \&				
Bondi (1958)	$34 \cdot 44$	17.36	3.66	$90 \cdot 0$ (1)
Zannetti \&				
Serra (1966)	$34 \cdot 40$	$17 \cdot 40$	$3 \cdot 66$	$90 \cdot 0$
This work* (294 K)	$34 \cdot 486$ (3)	$17 \cdot 408$ (2)	$3 \cdot 6635$ (6)	$90 \cdot 121$ (6)
$D_{o}=1.7$	75 (1) g cm	${ }^{-3} ; \quad D_{c}=1.75$	$\mathrm{g} \mathrm{cm}^{-3}$;	$Z=8$

Systematic absences
$h k l: h+k=2 n+1 ; h k 0: h, k=2 n+1 ; h 00: h \neq 4 n ; 0 k 0: k \neq 4 n$; Space group $C 2 / b$ (c unique)

* From a least-squares fit to 18 Bragg angles measured by a
back-reflexion method.
graphs confirmed the unit cell and space group found by previous workers (Table 1).

Dunitz (1957) has reported twinning in α-COPYCL, the occurrence of which he has ascribed to the paraorthorhombic nature of the crystals (Dunitz, 1964). Such twinning was said to produce anomalous orthorhombic Laue symmetry in many of the crystals examined by Dunitz, and indeed similar observations were made in the present study. However, careful inspection of all oscillation and Weissenberg photographs taken during the present work of about 20 crystals of α COPYCL with $\mathrm{Cu} K \alpha$, $\mathrm{Co} K \alpha$, and $\mathrm{Cr} K \alpha$ radiations revealed the previously unrecorded existence of an unusual triplet reflexion replacing the normal $\alpha_{1}-\alpha_{2}$ doublet at high Bragg angles. This triplet reflexion was interpreted (cf. Ubbelohde \& Woodward, 1946) as arising from the partial overlap of two $\alpha_{1}-\alpha_{2}$ doublets produced by twinning of the crystal across either (100) or (010). In either case, non-equivalent reciprocal lattice points from the twins are superimposed, but a triplet reflexion, rather than two completely superimposed doublets or a quartet, arises only for a particular, nonorthogonal, value of the monoclinic angle γ. Examination of Laue photographs of α-COPYCL indicated (Clarke, 1973) that the twinning probably occurred by reflexion across (100). Hence the triplet reflexions consisted of $\alpha_{1}^{\bar{\hbar} k l},\left\{\alpha_{2}^{\hbar k l}\right.$ and $\left.\alpha_{1}^{h k l}\right\}$, and $\alpha_{2}^{h k l}$.

Despite the superposition of non-equivalent reciprocal lattice points, diffraction intensities corresponding to a single crystal may be derived from the experimental intensities provided that the sizes of the twins are unequal, and their relative size can be estimated (see Lonsdale, Milledge \& Pant, 1965). The appropriate mathematical relationship is:

$$
\begin{equation*}
I_{h k l}=\left(P_{h k l}-f P_{\bar{h} k l}\right) /\left(1-f^{2}\right) \tag{1}
\end{equation*}
$$

where $I_{h k l}$ is the single-crystal intensity of reflexion $h k l, P$ denotes the measured twinned intensity indexed relative to the larger twin, and f is the ratio of the size of the smaller twin to the larger. In the case of α-COPYCL, the value of f was derived by the method of least squares through comparison of visually estimated intensities of the separated α_{1} reflexions comprising the high-angle triplets.

Intensity data were collected by the equi-inclination Weissenberg technique using two twinned crystals. Full details of the photographs taken are given in Table 2. The reflexions were indexed relative to the larger twin, and the intensities were measured on the JoyceDeeley flying-spot microdensitometer. Equation (1) was then applied to derive single-crystal intensities from the twinned data. Where one of the pair of values $P_{h k l}$ and $P_{h k l}$ was classed as unobserved, the other value was taken as the single-crystal intensity. Since each of the pairs of intensities was measured on the same photograph, the relative scale of the data was of no consequence during the detwinning operation. The detwinned data were corrected for the Lorentz-

Table 2. Data collection for α-COPYCL at 294 K

$\left.\begin{array}{l}\text { Layer } \\ h k 0 \\ h k 1 \\ h k 2 \\ h k 3\end{array}\right\}$	Crystal	Factor f in equation (1)	Cylinder radius for absorption correction
A	0.29	0.0075 cm	
	B	0.67	0.012 cm

Co $K \alpha$ radiation, $\lambda=1.7902 \AA ; \mu=98.5 \mathrm{~cm}^{-1}$
Crystal faces $\{100\},\{010\},\{001\}$
Crystal dimensions: A $0.010 \times 0.020 \times 0.040 \mathrm{~cm}$
B $0.019 \times 0.030 \times 0.035 \mathrm{~cm}$
Crystal rotation axis: c
polarization effect, and an approximate absorption correction was applied assuming the crystal envelope to be a cylinder (Table 2). In this manner, detwinned intensities were derived for 886 observed reflexions.
The data were placed on approximately the same relative scale by comparison with intensities measured from a Weissenberg photograph of the hol zone. Intensities in this zone are independent of twinning since the superposed reciprocal lattice points are symmetry equivalent.

Structure solution and refinement

Dornberger-Schiff (1964) pointed out the possibility of a second solution to the crystal structure of α COPYCL in addition to that proposed originally by Dunitz. The relation between the two structures is summarized in Table 3. In Dunitz's structure, which has space group $C 2 / b$ (c unique), there are two crystallographically independent molecules with cobalt atoms sited on twofold axes at $\left(0, \frac{4}{4}, z\right)$ and $\left(\frac{1}{4}, 0, z\right)$, and the b glide planes occur at $z=0$ and $\frac{1}{2}$. The structure therefore contains alternating, geometrically and crystallographically non-equivalent layers of molecules parallel to (100). Dornberger-Schiff's structure is a generalization of this along the z direction such that the projection of both structures on (001) is the same. In Dorn-berger-Schiff's structure, which has space group C2 (c unique), there are four crystallographically independent molecules with cobalt atoms sited on twofold axes at $\left(0, \frac{1}{4}, z\right),\left(0, \frac{3}{4}, z\right),\left(\frac{1}{4}, 0, z\right)$, and $\left(\frac{1}{4}, \frac{1}{2}, z\right)$. Molecules with the same x coordinate are related by a pseudo b glide plane occuring at $z=0$ for layers at $x=0$ and $\frac{1}{2}$, and $z=A \neq 0$ for layers at $x=\frac{1}{4}$ and $\frac{3}{4}$. The value of the parameter A is such that the two types of layer in the structure are geometrically, but not crystallographically, equivalent. The α-COPYCL structure then falls into the category of OD-structures defined by Dorn-berger-Schiff (1956) and Dornberger-Schiff \& GrellNiemann (1961).
Solution of the α-COPYCL structure using the two models discussed above is thereby reduced to the determination from the three-dimensional Patterson map of the values of the parameters (Table 3) z_{1} and z_{2} for Dunitz's structure, and A and z, for DornbergerSchiff's structure. The correct structure corresponding to each of the two models was selected from the possible

Table 3. Coordinates for the cobalt atoms in α-COPYCL after Dunitz (1957) and Dornberger-Schiff (1964)
Dunitz
(space group $C 2 / b$)

$$
\begin{gathered}
(0,0,0)+, \text { and }\left(\frac{1}{2}, \frac{1}{2}, 0\right)+ \\
\left(0, \frac{1}{4}, z_{1}\right),\left(0, \frac{3}{4},-z_{1}\right),\left(\frac{1}{4}, 0, z_{2}\right),\left(\frac{3}{4}, 0,-z_{2}\right) \\
z_{1} \neq z_{2}
\end{gathered}
$$

Dornberger--Schiff
(space group C2)

$$
\begin{gathered}
(0,0,0)+, \text { and }\left(\frac{1}{2}, \frac{1}{2}, 09\right)+ \\
\left(0, \frac{1}{4}, z_{1}\right),\left(0, \frac{3}{4},-z_{1}\right),\left(\frac{1}{4}, 0, A+z_{2}\right),\left(\frac{3}{4}, 0, A-z_{2}\right) \\
z_{1}=z_{2}, 0<A<1
\end{gathered}
$$

Patterson solution

$$
\begin{array}{ll}
\text { Dunitz } & \begin{array}{l}
z_{1}=0 \cdot 1, z_{2}=0 \cdot 4 \\
\text { Dornberger-Schiff } \\
z_{1}=0 \cdot 1, A=0 \cdot 5
\end{array}
\end{array}
$$

giving, for both models

$$
\begin{gathered}
(0,0,0)+, \text { and }\left(\frac{1}{2}, \frac{1}{2}, 0\right)+ \\
\left(0, \frac{1}{4}, 0 \cdot 1\right),\left(0, \frac{3}{4},-0 \cdot 1\right),\left(\frac{1}{4}, 0,-0 \cdot 4\right),\left(\frac{3}{4}, 0,0 \cdot 4\right)
\end{gathered}
$$

solutions to the Patterson function with the aid of structure-factor calculations giving $z_{1}=0 \cdot 1, z_{2}=-0 \cdot 4$, and $A=0 \cdot 5, z_{1}=0 \cdot 1$ respectively. Coordinates for the chlorine atoms were derived from the Patterson function, and those of the light atoms by Fourier methods. It is of interest to note that the two models initially give the same solution to the structure.
Full-matrix least-squares refinement was carried out for each of the two interpretations of the α COPYCL structure. Because of the extremely high correlation coefficients, refinement of the structure proposed by Dornberger-Schiff could only be accom-
plished by imposing the restriction that parameters of atoms related by the pseudo b-glide plane were not refined simultaneously.

Refinement of Dornberger-Schiff's structure destroyed the geometrical equivalence of the two types of layer, and the spatial distribution of the heavy atoms approached that originally proposed by Dunitz. In addition, the light atoms were shifted to positions corresponding to chemically unreasonable geometries for the pyridine rings. The interpretation of the structure of α-COPYCL proposed by Dornberger-Schiff was therefore rejected since it was not in accord with experimental observation.

The initial R value for the structure corresponding to Dunitz's interpretation was 23%. Refinement of atomic coordinates, layer-line scale factors, and eventually isotropic temperature factors reduced the R value to $11 \cdot 8 \%$. At this stage, the heavy atoms were assigned anisotropic temperature factors, and their scattering factors were modified to include anomalous dispersion terms which were calculated for Co $K \alpha$ radiation as described by Cromer (1965). The values of Δf^{\prime} and $\Delta f^{\prime \prime}$ were for cobalt -2.23 and 0.75 and for chlorine 0.35 and 0.93 respectively. Hydrogen atoms were added to the structure in calculated positions, and further refinement of coordinates and temperature factors for the non-hydrogen atoms reduced R to the final value of 11.4%. The structure factors were given unit weight throughout the refinement, and the function minimized was therefore $\left|\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right|$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1962).

Table 4. Fractional coordinates and U tensors $\left(\times 10^{4}\right)$ for α-COPYCL at 294 K
(a) Cobalt and chlorine. The anisotropic temperature factor takes the form $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11} \ldots+2 h k a^{*} b^{*} U_{12} \ldots\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
	0.0	0.25	0.15965	205	179	191	-10	0	0
$\operatorname{Co}(A)$	0.0	0.03694	0.18497	0.65286	223	256	213	30	-20
$\operatorname{Cl}(A)$	0.25	0.0	-0.44307	229	212	83	38	0	0
$\operatorname{Co}(B)$	0.01279	-0.06497	0.05751	224	270	227	-40	8	16

(b) Pyridine rings

	Layer A							
	x	y	z	$U_{\text {iso }}$	x	y	z	$U_{\text {iso }}$
	x	\boldsymbol{z}						
$\mathrm{C}(1)$	0.0786	0.3288	0.1224	232	0.3281	-0.0771	-0.5092	391
$\mathrm{C}(2)$	0.1072	0.3840	0.0729	328	0.3567	-0.1351	-0.5092	356
$\mathrm{C}(3)$	0.0943	0.4611	0.1282	430	0.3468	-0.2090	-0.4202	512
$\mathrm{C}(4)$	0.0577	0.4772	0.1391	490	0.3091	-0.2239	-0.3678	287
$\mathrm{C}(5)$	0.0311	0.4155	0.1984	291	0.2820	-0.645	-0.3615	231
N	0.0420	0.3384	0.1349	261	0.2920	-0.0931	-0.4304	278
$\mathrm{H}(1)$	0.088	0.269	0.072		0.338	-0.020	-0.558	
$\mathrm{H}(2)$	0.139	0.372	0.048		0.387	-0.119	-0.557	
$\mathrm{H}(3)$	0.116	0.509	0.110		0.367	-0.259	-0.421	
$\mathrm{H}(4)$	0.048	0.535	0.188		0.298	-0.281	-0.301	
$\mathrm{H}(5)$	0.000	0.427	0.208		0.252	-0.178	-0.309	

Standard deviations for coordinates

	x	y	z
Co	-	-	0.0014
Cl	0.00013	0.00027	0.0016
N	0.00045	0.00090	0.0060
C	$0.0005-0.0007$	$0.0010-0.0014$	$0.007-0.005$

Final atomic parameters for α-COPYCL are given in Table 4, bond lengths and angles (Busing, Martin \& Levy, 1964) in Table 5, coordination angles about the cobalt atoms in Table 6, and observed and calculated structure factors in Table 7. A diagram of the crystal structure is given in Fig. 1. In the remainder of this paper, the crystallographically non-equivalent alternating layers in the α-COPYCL structure will be designated type A at $x=0$ and $\frac{1}{2}$, and type B at $x=\frac{1}{4}$ and $\frac{3}{4}$.

Table 5. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for α-COPYCL
(a) Distances

	Type A	Type B
$\mathrm{N}-\mathrm{C}(1)$	$1 \cdot 28$ (2)	$1 \cdot 30$ (3)
$\mathrm{N}-\mathrm{C}(5)$	$1 \cdot 41$ (2)	1.31 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 39$ (3)	1.41 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 43$ (3)	$1 \cdot 37$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 29$ (3)	1.34 (3)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 42$ (3)	1.39 (3)
$\mathrm{Co}-\mathrm{N}$	$2 \cdot 112$ (16)	$2 \cdot 178$ (16)
$\mathrm{Co}-\mathrm{Cl}$	2.485 (7)	$2 \cdot 506$ (7)
$\mathrm{Co}-\mathrm{Cl}^{\text {i }}$	2.521 (7)	$2 \cdot 503$ (7)
$\mathrm{Cl}-\mathrm{Cl}^{\text {i }}$	3.664	$3 \cdot 664$
$\mathrm{Cl}-\mathrm{Cl}^{1 i}$	$3 \cdot 412$ (9)	-
$\mathrm{Cl}-\mathrm{Cl}^{11 \mathrm{i}}$	-	$3 \cdot 417$ (9)

Symmetry operators

$$
\mathrm{i}(x, y, z-1) ; \text { ii }\left(\bar{x}, \frac{1}{2}-y, z\right) ; \text { iii }\left(\frac{1}{2}-x, \bar{y}, z\right)
$$

(b) Angles

	Type A	Type B
$\mathrm{Co}-\mathrm{N}--\mathrm{C}(1)$	$126(1)$	$118(1)$
$\mathrm{Co}-\mathrm{N}-\mathrm{C}(5)$	$120(1)$	$122(1)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$128(2)$	$121(2)$
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4)$	$122(2)$	$122(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114(2)$	$120(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121(2)$	$117(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118(2)$	$121(2)$
$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	$113(2)$	$120(2)$

Least-squares planes of pyridine rings relative to crystal axes.

> Type $A 4.035 x-0.633 y+3.636 z=0.494$
> Type $B 5.813 x+2.761 y+3.564 z=-0.104$

Angle $\left({ }^{\circ}\right)$ between plane of pyridine rings and (001)
Type $A 7 \cdot 8(1 \cdot 8)$ Type $B 14 \cdot 0(1 \cdot 2)$
Angle $\left({ }^{\circ}\right)$ between b axis and $\mathrm{Co}-\mathrm{N}$ bond Type $A 43 \cdot 3$ (4) Type $B 41 \cdot 8$ (4)

Table 6. Coordination angles (${ }^{\circ}$) about cobalt in α-COPYCL

Type A	
$\mathrm{N}-\mathrm{Co}-\mathrm{Cl}$	
$\mathrm{N}-\mathrm{Co}-\mathrm{Cl}^{1}$	87.1
$\mathrm{N}-\mathrm{Co}-\mathrm{Cl}^{11}$	$92 \cdot 9$ (5)
$\mathrm{N}-\mathrm{Co}-\mathrm{Cl}^{\text {iii }}$	$89 \cdot 3$ (5)
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\text {ii }}$	$86 \cdot 7$ (3)
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\text {i }}$	$94 \cdot 1$ (2)
$\mathrm{Cl}^{\text {i }}$ - $\mathrm{Co}-\mathrm{Cl}^{\text {Hi }}$	$85 \cdot 1$ (3)
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{112}$	179.2 (3)
$\mathrm{N}-\mathrm{Co}-\mathrm{Co}^{1}$	$87 \cdot 5$ (6)
$\mathrm{C}(3)-\mathrm{Co}-\mathrm{Co}^{1}$	88.4 (3)

Type B	
$\mathrm{~N}--\mathrm{Co}-\mathrm{Cl}^{\mathrm{iv}}$	$90 \cdot 6(5)$
$\mathrm{N}--\mathrm{Co}-\mathrm{Cl}^{\mathrm{v}}$	$88.8(5)$
$\mathrm{N}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{i}}$	$91 \cdot 2(5)$
$\mathrm{N}-\mathrm{Co}-\mathrm{Cl}^{2}$	$89 \cdot 4(5)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{iv}}$	$86 \cdot 1(3)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{i}}$	$94.0(2)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{v}}$	$85.9(3)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{iv}}$	$179.9(3)$
$\mathrm{N}-\mathrm{Co}-\mathrm{Co}^{\text {vi }}$	$88.8(6)$
$\mathrm{C}(3)-\mathrm{Co}-\mathrm{Co}^{\text {vi }}$	$89.0(4)$

Symmetry operators

$$
\begin{array}{llll}
\mathrm{i} & (x, y, z-1) ; & \text { ii } & \left(\bar{x}, \frac{1}{2}-y, z\right. \\
\mathrm{iii} & \left(\bar{x}, \frac{1}{2}-y, z-1\right) ; & \text { iv } & \left(\frac{1}{2}-x, \bar{y}, z-1\right) \\
\mathrm{v} & \left(\frac{1}{2}-x, \bar{y}, z\right) ; & \text { vi } & \left(\begin{array}{r}
x, y, z+1)
\end{array}\right.
\end{array}
$$

The accuracy of the α-COPYCL structure
The geometry of the pyridine rings, especially that of type A, is only of moderate accuracy (Table 5). In particular, the bond lengths $\mathrm{N}(A)-\mathrm{C}(1 A)$ and $\mathrm{C}(3 A)-\mathrm{C}(4 A)$, and bond angles $\mathrm{C}(1 A)-\mathrm{C}(2 A)-\mathrm{C}(3 A)$ and $\mathrm{C}(5 A)-\mathrm{N}(A)-\mathrm{C}(1 A)$ are too small, and the angles $\mathrm{Co}(A)-\mathrm{N}(A)-\mathrm{C}(1 A)$ and $\mathrm{N}(A)-\mathrm{C}(1 A)-\mathrm{C}(2, A)$ are too large. It is therefore of interest to examine the effects on the accuracy of the final structure of using a twinned crystal for data collection.

There are two ways in which the reliability of the detwinned structure factors, and hence of the final structure, could be reduced relative to single-crystal structure factors. Firstly, the detwinning operation itself increases the random error of the resultant

Fig. 1. The crystal structure of α-COPYCL projected on the (001) plane. $100 z$ for cobalt is given and the + and - signs indicate the z coordinate of the light atoms relative to cobalt.

Fig. 2. The variation of $\Delta F_{h k l} / F_{h k l}$ with intensity ratio r for two values of the twin ratio f. $\mathrm{o}-\mathrm{o}, f=0 \cdot 29 ; \mathrm{x}-\mathrm{x}, f=0.67$.
structure factors, and secondly, systematic errors are produced by any inaccuracy in the experimental value of the factor f used in equation (1). This section of the paper is devoted to an assessment of the importance of these two factors.
The random error associated with each structure factor may be derived as follows from the error in the measured intensities. The error in the value of $I_{n k l}$ derived from equation (1) is given by

$$
\begin{equation*}
\Delta I_{h k l}=\frac{\left(\Delta P_{h k l}+f \Delta P_{\hat{h} k l}\right)}{\left(1-f^{2}\right)} \tag{2}
\end{equation*}
$$

where the quantity I can lie within the range $I \pm \Delta I$. Inspection of the experimental measurements of $P_{h k l}$ showed that, except for measurements close to the
threshold level, the value of $\Delta P_{\text {hkl }}$ could be approximated by the general relationship

$$
\begin{equation*}
\Delta P_{h k l}=e P_{h k l} \tag{3}
\end{equation*}
$$

where e is a fractional quantity. Substitution of equation (3) into equation (2) followed by combination of equations (1) and (2) gives the relationship

$$
\begin{equation*}
\frac{\Delta I_{n k l}}{I_{n k l}}=\frac{e(r+f)}{(r-f)} \tag{4}
\end{equation*}
$$

where $r=P_{h k l} / P_{\overline{h k} l}$, the ratio of the measured intensities related by twinning. In addition, it is easily shown that

$$
\begin{equation*}
\frac{\Delta I_{n k l}}{I_{h k l}}=\frac{2 \Delta F_{n k l}}{F_{h k l}} \tag{5}
\end{equation*}
$$

Table 7. $100 F_{o}$ and $100 F_{c}$ for $\alpha-C O P Y C L$ at 294 K

 -

 هо

where $F_{h k l}$ is the detwinned structure factor for reflexion hkl. Combining equations (4) and (5), the desired result is obtained

$$
\begin{equation*}
\frac{\Delta F_{h k l}}{F_{h k l}}=\frac{e(r+f)}{2(r-f)} . \tag{6}
\end{equation*}
$$

The variation of $\Delta F_{h k l} / F_{h k l}$ as a function of r is shown in Fig. 2 for the particular value $e=0.05$ which was in accord with the measured intensity data. The value of $\Delta F_{h k l} / F_{h k l}$ increases rapidly when $P_{h k l} / P_{\overline{h k l}}$ approaches the value of f, and therefore the accuracy of the smaller value of the pair of structure factors $F_{h k l}$ and $F_{\bar{h} k l}$ diminishes relative to the single-crystal case ($f=0$) when $P_{h k l}$ and $P_{\overline{h k l}}$ are unequal, but the accuracy of the larger structure factor of the pair may be almost unchanged.

In order to assess the effect of random error on the final structure, least-squares refinement was carried out using only those structure factors where $\Delta F_{h k l} / F_{h k l}$ calculated from equation (6) was less than an arbitrary limit of 0.125 . This limit removed 140 structure factors from the data set of 886 reflexions, and the immediate result was to lower the R value to 9.4%. However, the atomic parameters did not change appreciably on refinement, and therefore the magnification of random error during the detwinned operation did not have a significant effect on the final structure for α-COPYCL. Values of $\Delta F_{h k l} / F_{h k l}$ calculated from equation (6) could, of course, be used to construct a weighting function for the data during structure refinement, but we have not attempted this since our interest lay in eliminating the effect on the final structure of the least accurate intensity measurements.
The effect on the final structure of a possibly inaccurate value of the factor f used in equation (1) was estimated by employing extreme values of this factor to produce data sets which were under and over corrected for twinning. For this purpose, reflexions with $l \leq 2$ were processed with equation (1) using values of $f=0 \cdot 0,0 \cdot 29$, and 0.50 , the intermediate value being that determined experimentally. Leastsquares refinement of the atomic coordinates and isotropic temperature factors for α-COPYCL was carried out using each of these three data sets leading to R values of $15 \cdot 8,12 \cdot 0$ and $12 \cdot 8 \%$ respectively. The only significant differences between the three structures derived in this manner concerned the geometry of the pyridine rings which is given for all three structures in Table 8. For both the under and over corrected data, the pyridine ring geometry is slightly more distorted than for the correctly detwinned data, but there is no radical difference between the structures derived from the three data sets. It would appear, therefore, that the geometry of the pyridine rings in the α COPYCL structure is partially dependent on the value of the detwinning constant f, but that the possible error in the experimentally determined value is too small to produce any serious effect on the structure.

Table 8. Pyridine ring geometries for α-COPYCL obtained through the use of various values of twin size ratio, f, for data with $1 \leq 2$
(a) Bond lengths (\AA)

$f=0.0$		$f=0.29$	$f=0.50$	
A	B	A	B	A
1.3				
1.31	1.32	1.28	1.33	1.30
1.39	1.24			
1.37	1.43	1.41	1.42	1.39
1.34	1.42	1.43	1.38	1.44
1.29				
1.29	1.36	1.32	1.37	1.25
1.40	1.36	1.43	1.40	1.42
1.43				
1.50	1.45	1.43	1.31	1.45
				1.35

(b) Bond angles (${ }^{\circ}$)

	$f=0 \cdot 0$		$f=0 \cdot 29$		$f=0 \cdot 50$	
	A	B	A	B	A	B
$\mathrm{C}(1)-\mathrm{N}--\mathrm{C}(5)$	119	119	114	120	116	120
$\mathrm{~N}-\mathrm{C}(1)-\mathrm{C}(2)$	126	123	128	120	127	124
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116	117	114	120	114	116
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121	117	121	117	122	117
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	122	126	118	120	121	124
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}$	113	116	121	122	118	117

Clarke (1973) has shown by examination of diffuse scattering and difference Fourier syntheses that there is no appreciable disorder in the crystal structure of α-COPYCL, and we are therefore forced to conclude that the distortions of the pyridine rings in the crystal structure are due to a combination of errors arising from the intensity measurements, the approximate absorption correction and the detwinning process.

The crystal structure of γ-COPYCL at 89 K

Crystallographic studies on γ-COPYCL were carried out using the low-temperature X-ray camera described by Thomas (1972). Considerable difinculty was experienced in obtaining undamaged crystals of γ COPYCL suitable for X-ray work because of the unusually violent, self-induced, agitation of the α-COPYCL crystals which occurred whilst the crystals passed through the low-temperature phase transition to the γ-form at about 150 K . Nevertheless, one undamaged crystal was eventually obtained by cooling very slowly in the region of the transition.
The triplet reflexions, characteristic of twinning in α-COPYCL, did not appear in any of the oscillation or Weissenberg photographs taken of γ-COPYCL indicating that the unit cell-angle γ had become exactly 90°. Indeed, there were no extra maxima in the diffraction pattern of γ-COPYCL which might have indicated twinning of the crystal, and the γ-COPYCL crystals therefore had complete single-crystal character, although they were derived from twinned material. [A similar observation was made for Rochelle salt by Ubbelohde \& Woodward (1946)].
γ-COPYCL crystals are monoclinic with space group $P 2_{1} / n$ (second setting, b unique), $Z=2$, and $D_{c}=1.82$ $\mathrm{g} \mathrm{cm}^{-3}$. The unit cell was chosen to correspond closely to that of α-COPYCL, and the unit-cell parameters, derived by least-squares calculations from

11 Bragg angles measured by a back-reflexion technique with $\mathrm{Cu} K \alpha$ radiation are $a=17.437$ (13), $b=8.408$ (2), $c=3.593$ (7) $\AA, \beta=90.05(5)^{\circ} . \gamma$-COPYCL is therefore isomorphous with dichlorobis(pyridine)copper(II), a structure previously examined by Dunitz (1957), who pointed out the similarity to the structure of α COPYCL. In fact the unit cell of γ-COPYCL is of similar shape to that of α-COPYCL, but the a and b axes are halved in length in the low-temperature form, and the unique axis of the monoclinic cell is b instead of c.

Collection of intensity data at 89 K

The limitations of the low-temperature X-ray camera (Thomas, 1972) suggest the inclined-beam oscillation method (Milledge, 1963) as the most convenient for data collection. In this case, the method was usefully modified by taking 40° oscillation photographs of a crystal mounted about the c axis with the Weissenberg motion in operation but without the layer-line screens. Data from adjacent layers did not overlap on the film because of the large gap between layer lines, and the separation of the reflexions produced by the Weissenberg motion greatly facilitated indexing.

Unfortunately, the construction of the cryostat in which the crystal was mounted did not allow the recording of data with $l=-3$, but all of the available data in the range $-2 \leq l \leq 0$ were collected using unfiltered $\mathrm{Cu} K \alpha$ radiation and a beam inclination angle of 20.75°. Certain portions of the reciprocal sphere could not be explored since the cryostat of the lowtemperature camera is supported by three struts

Fig. 3. The crystal structure of γ-COPYCL projected on the (001) plane. $100 z$ for cobalt is given, and the + and - signs indicate the z coordinate of the light atoms relative to cobalt.
arranged with trigonal symmetry about the camera rotation axis (see Thomas, 1972). Each of these struts subtends an angular obstruction of 30° at the crystal, and together they obscure one quarter of reciprocal space. The unobscured volume of reciprocal space is thus divided into three equal portions which may be explored using three non-overlapping oscillation ranges of 90°, chosen so that the direct X-ray beam sweeps across the gap between two adjacent struts. In this investigation, these 90° ranges were further subdivided into three 40° oscillation ranges overlapped by 15°. Nine such 40° oscillation photographs were needed to explore the available portion of reciprocal space, each photograph being taken with a three-film pack.

The reflexions were indexed by comparing the photographs with computer generated replicas, and the intensities were measured on the Joyce-Deeley flyingspot microdensitometer. Least-squares scaling of the three 40° oscillation photographs in each 90° range was achieved by comparison of the same reflexions measured on overlapping photographs. This operation yielded three batches of data corresponding to the three unique 90° ranges. Lorentz-polarization and absorption corrections were then applied. The absorption correction was calculated by the method of Busing \& Levy (1957) using the measured dimensions of the crystal envelope. The crystal used was bounded by faces of the type $\{100\},\{010\}$, and $\{001\}$, and had dimensions $0.0171 \times 0.0341 \times 0.0900 \mathrm{~cm}$ with $\mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})$ $=162.6 \mathrm{~cm}^{-1}$. The remaining three batches of data were merged into one final set of unique data by leastsquares comparison of the corrected intensities of equivalent reflexions. This unique set of data was not placed on a common relative scale because it was not possible to estimate scale factors between the three layer lines.

Structure solution and refinement

With only two molecules in the unit cell, and space group $P 2_{1} / n$, the COPYCL units in γ-COPYCL must be sited on the centres of symmetry at $(0,0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The γ-COPYCL structure, therefore, was easily derived by Patterson and Fourier methods. Fullmatrix least-squares refinement of layer-line scale factors, coordinates, and isotropic temperature factors reduced R from the initial value of 32% to $11 \cdot 2 \%$ after four cycles. Hydrogen atoms were added in calculated positions, and the scattering factors of the heavy atoms were modified to include anomalous dispersion terms (International Tables for X-ray Crystallography, 1962). Further refinement of coordinates and isotropic temperature factors of the non-hydrogen atoms followed by refinement of anisotropic temperature factors for cobalt and chlorine reduced R to the final value of 9.6% for the 368 unique observed reflexions. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). The function minimized was $\sum \omega\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $\omega=1$ for all data.

Table 9. Fractional coordinates and U-tensors $\left(\times 10^{4}\right)$ for γ-COPYCL at 89 K
(a) Cobalt and chlorine. The anisotropic temperature factor takes the form $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11} \ldots+2 h k a^{*} b^{*} U_{12} \ldots\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	73	36	41	-4	29	19
Cl	0.07178	$0 \cdot 13623$	$0 \cdot 48657$	81	33	91	-30	10	-29

(b) Pyridine ring

	\boldsymbol{x}	y	z	$U_{\text {iso }}$		x	y	z
N	-0.0855	0.1850	-0.0208	82				
$\mathrm{C}(1)$	-0.0651	0.3350	-0.0868	219	$\mathrm{H}(1)$	-0.005	0.359	-0.139
$\mathrm{C}(2)$	-0.1193	0.4535	-0.1277	173	$\mathrm{H}(2)$	-0.104	0.577	-0.172
$\mathrm{C}(3)$	-0.1948	0.4163	-0.0620	164	$\mathrm{H}(3)$	-0.237	0.512	-0.073
$\mathrm{C}(4)$	-0.2155	0.2646	0.0150	140	$\mathrm{H}(4)$	-0.273	0.239	0.057
$\mathrm{C}(5)$	-0.1595	0.1525	0.0350	115	$\mathrm{H}(5)$	-0.173	0.030	0.086

Standard deviations for coordinates

	x	y	z
Cl	0.00022	0.00046	0.0017
N	0.0008	0.0017	0.0062
C	$0.0010-0.0012$	$0.0023-0.0026$	$0.0075-0.0083$

Final parameters for the γ-COPYCL structure are given in Table 9, bond lengths and angles in Table 10 (Busing, Martin \& Levy, 1964), coordination angles about the cobalt in Table 11, and observed and calculated structure factors in Table 12. The crystal

Table 10. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for γ-COPYCL

Distances		Angles	
$\mathrm{N}-\mathrm{C}(1)$	$1 \cdot 33$ (3)	Co- $\mathrm{N}-\mathrm{C}$ (1)	120 (1)
$\mathrm{N}-\mathrm{C}$ (5)	1.33 (2)	$\mathrm{Co}-\mathrm{N}-\mathrm{-C}(5)$	121 (1)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 38$ (5)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	121 (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 37$ (3)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4)$	123 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.35 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118 (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.36 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120 (2)
$\mathrm{Co}-\mathrm{N}$	$2 \cdot 156$ (14)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118 (2)
$\mathrm{Co}-\mathrm{Cl}$	2.435 (5)	$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	119 (2)
$\mathrm{Co}-\mathrm{Cl}^{\text {i }}$	$2 \cdot 507$ (5)		
$\mathrm{Cl}-\mathrm{Cl}^{1 \mathrm{H}}$	$3 \cdot 593$		
$\mathrm{Cl}-\mathrm{Cl}^{\text {i1i }}$	$3 \cdot 395$ (7)		

Symmetry operators

$$
\text { i }(\bar{x}, \bar{y}, \bar{z}) \text {; ii }(x, y, z-1) ; \text { iii }(\bar{x}, \bar{y}, 1-z)
$$

Least-squares plane of pyridine ring relative to crystal axes. $1.804 x+1.561 y+3.510 z=0.071$

Angle $\left({ }^{\circ}\right)$ between plane of pyridine ring and (001): $11 \cdot 0(1 \cdot 0)$ Angle (${ }^{\circ}$) between b axis and $\mathrm{Co}-\mathrm{N}$ bond: $43 \cdot 8$ (4).

Table 11. Coordination angles
$\left({ }^{\circ}\right)$ about cobalt in $\gamma-C O P Y C L$

$\mathrm{N}^{\mathbf{i}}$--CO-Cl ${ }^{\text {ii }}$	$90 \cdot 5$ (5)
$\mathrm{Ni}^{\mathbf{i}}$ - $\mathrm{Co}-\mathrm{Cl}$	$87 \cdot 7$ (5)
$\mathrm{N}^{\mathbf{i}}$--Co-Cl ${ }^{\text {i }}$	$92 \cdot 3$ (5)
N^{i}--Co-Cl ${ }^{\text {iii }}$	$89 \cdot 5$ (5)
$\mathrm{Cl}^{\text {iil }}-\mathrm{Co}-\mathrm{Cl}$	$86 \cdot 7$ (1)
$\mathrm{Cl}^{\text {ii }}-\mathrm{Co}-\mathrm{Cl}$	$93 \cdot 3$ (1)
$\mathrm{N}^{\mathbf{i}}-\mathrm{Co}-\mathrm{Co}^{\text {iv }}$	88.0 (6)
$\mathrm{C}\left(3^{\text {i }}\right.$) $-\mathrm{Co}-\mathrm{Co}^{\text {iv }}$	$87 \cdot 4$ (3)

Symmetry operators

$$
\begin{array}{rr}
\mathrm{i}(\bar{x}, \bar{y}, \quad \bar{z}) ; & \text { ii }(x, y, z-1) \\
\text { iii }(\bar{x}, \bar{y}, 1-z) ; & \text { iv }(x, y, 1+z)
\end{array}
$$

structure of γ-COPYCL projected onto the (001) plane is shown in Fig. 3.

Discussion of the crystal structures of $\boldsymbol{\alpha}$-and $\boldsymbol{\gamma}$-COPYCL

The crystal structures of both α - and γ-COPYCL contain polymeric chains of molecules linked by $\mathrm{Co}-\mathrm{Cl}$ bridging bonds. These chains run parallel to the c axis of the unit cell. The Co atom is surrounded by a

Table 12. $100 F_{o}$ and $100 F_{c}$ for $\gamma-C O P Y C L$ at 89 K

 (

(a)

(b)

(c)

Fig. 4. Cobalt coordination angles in the three crystallographically independent polymeric chains of COPYCL. (a) α-COPYCL, type A; (b) α-COPYCL, type B; (c) γ COPYCL.
tetragonally distorted octahedron whose corners are defined by two N and four Cl atoms (Fig. 4). In both structures, the $\mathrm{Co}-\mathrm{N}$ bond distances are close to $2 \cdot 15$ \AA (Tables 5 and 10), and the Co and the surrounding Cl atoms are coplanar. The $\mathrm{Co}-\mathrm{Cl}$ distances in $\alpha-$ COPYCL are all equal ($2 \cdot 50 \AA$, Table 5) within experimental error, but two of these bonds are shorter in the γ-form ($2.43 \AA$, Table 10) with two remaining the same. Two of the Cl atoms have therefore moved closer to the Co as a result of the phase transformation and the contraction of these $\mathrm{Co}-\mathrm{Cl}$ bonds is presumably the cause of the decrease in the length of the c axis by $0.07 \AA$ during the transition to γ-COPYCL.

The basic unit of the coordination sphere about the Co atom (Fig. 4, Tables 6 and 11) is the same within experimental error in all three of the molecular environments found in the α - and γ-COPYCL structures as shown by the coordination angles about Co. The only variation is the position of the second N atom, not shown in Fig. 4, which is dictated by the crystallographic symmetry at the Co atom. In α COPYCL, where the Co is situated on a twofold axis, symmetry produces a bend of $2 \times 2.5^{\circ}$ or $2 \times 1.2^{\circ}$ (Fig. 4) in the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ line, but this line is straight in the γ-form where the Co atom is centrosymmetric. A comparison of the three coordination geometries in Fig. 4 suggests that these represent a preferred position of the N atom with respect to the plane of the Co and Cl atoms and the $\mathrm{Co}-\mathrm{Cl}$ bonds, the only variation being one of enantiomorph.

In both α - and γ-COPYCL, the $\mathrm{Co}-\mathrm{N}$ bonds and the $\mathrm{Co}-\mathrm{C}(3)$ lines make acute angles with the c axis (Tables 6 and 11). Whether this acute angle is bounded by $+c$ or $-c$ is determined by intermolecular contacts to the terminal atoms, $\mathrm{C}(3)$ and $\mathrm{H}(3)$, of the pyridine rings. These terminal atoms are directed between the ortho and meta C atoms of the pyridine rings in the adjacent layer in the structure (Figs. 1 and 3), and in three dimensions are sand wiched between two neighbouring pyridine rings, one unit-cell translation apart along \mathbf{c}, which are at higher and lower z coordinate than the occluded terminal atoms. The direction of the $\mathrm{Co}-\mathrm{N}$ bond and $\mathrm{Co}-\mathrm{C}(3)$ line is, in all cases, that which tends to equalize the intermolecular contact distances between atoms $\mathrm{C}(3)$ and $\mathrm{H}(3)$ and the ortho and meta C and H atoms of the pyridine rings at higher and lower z coordinate in the adjacent layer (Table 13).

The constancy of the Co coordination geometry, and the observed invariance, within experimental error, of the directions of the crystallographic axes relative to the crystal morphology enables the directions of the $\mathrm{Co}-\mathrm{N}$ bond and the b axis of the unit cell to be used as reference axes to compare the crystal structures of α - and γ-COPYCL. In α-COPYCL, the angle between the $\mathrm{Co}-\mathrm{N}$ bond and the b axis is 43.3° for type A layers and 41.8° for type B layers whilst in γ-COPYCL it is $43 \cdot 8^{\circ}$. The polymeric chains in the type B layers of α-COPYCL have therefore rotated about the c axis of

Table 13. Intermolecular contacts (\AA) for $\alpha-$ and γ-COPYCL

(a) Between pyridine rings α-COPYCL

$\mathrm{C}(3 A)-\mathrm{C}\left(1 B^{1}\right)$	3.64	$\mathrm{C}\left(3 B^{\text {iil }}\right)-\mathrm{C}(1 A)$	3.86
$\mathrm{C}(3 A)-\mathrm{C}\left(1 B^{\text {(1) }}\right.$)	4.03	$\mathrm{C}\left(3 B^{\text {III }}\right)$ - $\mathrm{C}\left(1 A^{\text {iv }}\right)$	3.71
$\mathrm{C}(3 A)-\mathrm{C}\left(2 B^{\text {I }}\right.$)	3.74	$\mathrm{C}\left(3 B^{\text {III }}\right)-\mathrm{C}(2 A)$	$3 \cdot 88$
$\mathrm{C}(3 A)-\mathrm{C}\left(2 B^{11}\right)$	$4 \cdot 13$	$\mathrm{C}\left(3 B^{\text {III }}\right)$ - $\mathrm{C}\left(2 A^{\text {iv }}\right)$	3.91
$\mathrm{H}(3 A)-\mathrm{H}\left(1 B^{\text {i }}\right.$)	$2 \cdot 3$	$\mathrm{H}\left(3 B^{111}\right)-\mathrm{H}(1 A)$	$2 \cdot 4$
$\mathrm{H}(3 A)-\mathrm{H}\left(1 B^{\text {II }}\right)$	$2 \cdot 6$	$\mathrm{H}\left(3 B^{\text {ilit }}\right)-\mathrm{H}\left(1 A^{\text {iv }}\right)$	2.4
$\mathrm{H}(3 A)-\mathrm{H}\left(2 B^{1}\right)$	2.5	$\mathrm{H}\left(3 B^{\text {ili }}\right)-\mathrm{H}(2 A)$	2.6
$\mathrm{H}(3 A)-\mathrm{H}\left(2 B^{11}\right)$	$2 \cdot 8$	$\mathrm{H}\left(3 B^{\text {ili }}\right)-\mathrm{H}\left(2 A^{\text {iv }}\right)$	2.8
$\mathrm{C}(4 A)-\mathrm{C}\left(5 A^{v}\right)$	3.79	$\mathrm{C}(4 B)-\mathrm{C}\left(5 B^{\text {vi }}\right)$	3.82
$\mathrm{C}(4 A)-\mathrm{C}\left(4 A^{v}\right)$	$4 \cdot 19$	$\mathrm{C}(4 B)-\mathrm{C}\left(4 B^{\vee 1}\right)$	$4 \cdot 28$
$\mathrm{C}(5 A)-\mathrm{C}\left(5 A^{v}\right)$	$3 \cdot 90$	$\mathrm{C}(5 B)-\mathrm{C}\left(5 B^{\text {v1 }}\right.$)	3.84
$\mathrm{H}(4 A)-\mathrm{H}\left(5 A^{V}\right)$	$2 \cdot 3$	$\mathrm{H}(4 B)-\mathrm{H}\left(5 B^{v i}\right)$	2.3
$\mathrm{H}(4 A)-\mathrm{H}\left(4 A^{V}\right)$	3.8	$\mathrm{H}(4 B)-\mathrm{H}\left(4 B^{\text {v1 }}\right.$)	$3 \cdot 8$
$\mathrm{H}(5 A)-\mathrm{H}\left(5 A^{V}\right)$	3.0	$\mathrm{H}(5 B)-\mathrm{H}\left(5 B^{\text {v1 }}\right.$)	2.9
γ-COPYCL			
$\mathrm{C}\left(3^{\text {vil }}\right)-\mathrm{C}\left(5^{\text {vili }}\right)$	$3 \cdot 64$	$\mathrm{C}(1)-\mathrm{C}\left(2^{\text {v }}\right.$)	3.76
$\mathrm{C}\left(3^{\text {vil }}\right)-\mathrm{C}\left(5^{\text {ix }}\right.$)	3.74	$\mathrm{C}(2)-\mathrm{C}\left(2^{v}\right)$	4.33
$\mathrm{C}\left(3^{\text {vil }}\right)$ - $\mathrm{C}\left(4^{\text {vili }}\right)$	$3 \cdot 70$	$\mathrm{C}(1)-\mathrm{C}\left(1^{v}\right)$	3.64
$\mathrm{C}\left(3^{\text {vii }}\right)-\mathrm{C}\left(4^{\text {ix }}\right.$)	$3 \cdot 86$	$\mathrm{H}(1)-\mathrm{H}\left(2^{v}\right)$	2.6
$\mathrm{H}\left(3^{\text {vili }}\right)-\mathrm{H}\left(5^{\text {vili }}\right)$	$2 \cdot 4$	$\mathrm{H}(2)-\mathrm{H}\left(2^{\text {v }}\right.$)	4.0
$\mathrm{H}\left(3^{\text {vil }}\right)-\mathrm{H}\left(5^{\text {ix }}\right.$)	$2 \cdot 3$	$\mathrm{H}(1)-\mathrm{H}\left(1^{v}\right)$	$2 \cdot 6$
$\mathrm{H}\left(3^{\text {vil }}\right)-\mathrm{H}\left(4^{\text {vili }}\right.$)	2.6		
$\mathrm{H}\left(3^{\text {vil }}\right)-\mathrm{H}\left(4^{\text {ix }}\right.$)	2.7		

(b) Contacts to chlorine atoms α-COPYCL

$\mathrm{Cl}(A)-\mathrm{C}\left(5 A^{\mathrm{x}}\right)$	$5 \cdot 62$	$\mathrm{Cl}(B)-\mathrm{C}\left(5 B^{\text {xi }}\right)$	$5 \cdot 36$
$\mathrm{Cl}(A)-\mathrm{C}\left(2 B^{\text {ili }}\right)$	5.69	$\mathrm{Cl}(B)-\mathrm{C}\left(2 A^{\text {xiI }}\right)$	4.92
$\mathrm{Cl}(A)-\mathrm{C}\left(3 B^{\text {III }}\right)$	$5 \cdot 63$	$\mathrm{Cl}(B)-\mathrm{C}\left(3 A^{\text {x1 }}\right)$	5.09
$\mathrm{Cl}(A)-\mathrm{H}\left(5 A^{\mathrm{x}}\right)$	$5 \cdot 6$	$\mathrm{Cl}(B)-\mathrm{H}\left(5 B^{\text {xi }}\right.$)	$5 \cdot 4$
$\mathrm{Cl}(A)-\mathrm{H}\left(2 B^{\text {III }}\right)$	$5 \cdot 3$	$\mathrm{Cl}(B)-\mathrm{H}\left(2 A^{\text {xil }}\right)$	$4 \cdot 3$
$\mathrm{Cl}(A)-\mathrm{H}\left(3 B^{\text {ili }}\right)$	$5 \cdot 3$	$\mathrm{Cl}(B)-\mathrm{H}\left(3 A^{\times 11}\right)$	$4 \cdot 7$
γ-COPYCL			
$\mathrm{Cl}-\mathrm{C}\left(1^{\text {xili }}\right)$	4.94	$\mathrm{Cl}-\mathrm{H}\left(1^{\text {xili }}\right)$	5.0
$\mathrm{Cl}-\mathrm{C}\left(4^{\text {xiv }}\right.$)	$5 \cdot 16$	$\mathrm{Cl}-\mathrm{H}\left(4^{\text {xiv }}\right.$)	$4 \cdot 4$
$\mathrm{Cl}-\mathrm{C}\left(3^{\text {xiv }}\right.$)	$5 \cdot 57$	$\mathrm{Cl}-\mathrm{H}\left(3^{\text {xiv }}\right.$)	$5 \cdot 2$

Symmetry operators

	($\left.\frac{1}{2}-x, \frac{1}{2}-y, \quad z\right) ;$	ii	($\left.\frac{1}{2}-x, \frac{1}{2}-y, \bar{z}-1\right)$
iii	-x, $\overline{\mathrm{y}}, \quad z) ;$	iv	($x, y, z-1)$
	z);	vi	($\frac{1}{2}-x, \frac{1}{2}-y, 1-z$)
vii	($\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$;	vii	$\bar{x}, \quad \bar{y}, \quad \bar{z})$
ix	($\bar{x}, \quad \bar{y}, 1-z)$;	x	
xi	($\frac{1}{2}-x, \bar{y}-\frac{1}{2}, \bar{z}-1$);	xii	$\left.x, y-\frac{1}{2}, 1-z\right)$
xiii	$\bar{x}, 1-y, 1-z)$;	xiv	($\frac{1}{2}+x, \bar{y}-$

the unit cell by $2 \cdot 0^{\circ}$ on transformation to γ-COPYCL. It is this rotation which allows the a axis of the unit cell to expand by $0.388 \AA$ from $34 \cdot 486 \AA$ to $2 \times 17.437 \AA$ whilst the b axis contracts by $0.592 \AA$ from $17.408 \AA$ to $2 \times 8.408 \AA$ as the crystal transforms from $\alpha-$ to γ COPYCL. A molecular rotation of this kind for all the polymeric chains in α-COPYCL was previously predicted by approximate calculations based on magnetic anisotropy data (Bentley et al., 1971).

A fundamental difference between the crystal structures of α - and γ-COPYCL concerns the arrangement of the pyridine rings about Co (Fig. 5). This arrangement is determined by the symmetry of the Co atom and thus in α-COPYCL the planes of the pyridine rings are twofold related, whilst in γ-COPYCL these
planes are parallel. Consequently, half of the pyridine rings in α-COPYCL undergo a rotation about the $\mathrm{Co}-\mathrm{N}$ bond on transformation to γ-COPYCL.

The degree of rotation of the pyridine rings about the $\mathrm{Co}-\mathrm{N}$ bond can be represented by the angle between the plane of the pyridine ring and the (001) plane, and is determined in both structures by intermolecular contacts between the closest centrosymmetrically related pyridine rings in the same layer.

The fact that the b-glide related Co atoms in α-COPYCL have different z coordinates uniquely determines the direction of rotation of the pyridine rings about the $\mathrm{Co}-\mathrm{N}$ bond, and the angle between the ring plane and (001) is such that the closest centrosymmetrically related ortho and meta C and H atoms are in van der Waals contact (Table 13). The non-equivalence of the adjacent layers in α-COPYCL means that the pyridine rings in these layers are inclined to (001) to different extents, and the inclination is least where the difference in z coordinates of the b-glide related Co atoms is greatest. The observed angles of inclination are for layer $A \pm 7.8^{\circ}(\Delta z=0.32)$ and for layer $B \pm 14.0^{\circ}$ ($\Delta z=0 \cdot 12$). For γ-COPYCL, the direction of rotation of the pyridine rings about the $\mathrm{Co}-\mathrm{N}$ bond is not uniquely determined by the relative z coordinate of adjacent Co atoms in each layer since this quantity is zero. However, once a direction of rotation is chosen, packing considerations would reproduce it

(a)

(b)

(c)

Fig. 5. Portions of the polymeric chains in the COPYCL structures viewed along the plane of the cobalt and chlorine atoms. (a) α-COPYCL, type A; (b) α-COPYCL, type B; (c) γ-COPYCL.
throughout the structure, and the observed magnitude of the inclination of the ring to (001), $11 \cdot 0^{\circ}$, is again such that the closest centrosymmetrically related pyridine rings within each layer are in van der Waals contact (Table 13).

By far the greatest difference between the α - and γ-COPYCL structures concerns the distribution of the Co atoms along the z direction. The crystallographically independent layers in the α-COPYCL structure, which are approximately related by the non-crystallographic symmetry operation ($\frac{1}{4}+x, \frac{1}{4}-y, z-0 \cdot 6$), become related by a crystallographic n-glide plane in the γ-form, and in addition the unit-cell axes a ar.d b are halved in length. Therefore the Co atoms of types A and B which occur at $z= \pm 0 \cdot 16$ and $\pm 0 \cdot 44$ respectively in α-COPYCL move along z to $z=0.0$ and ± 0.5 during the transformation to γ-COPYCL (Figs. 1 and 3) with the remaining atoms in the polymeric chains moving by the same amount. Neglecting the small difference in the length of the c axis in the two forms, these changes are equivalent to a z shift of 0.58 \AA in type A layers and $0.22 \AA$ in type B.

Despite this considerable movement, and the reorientation of the pyridine rings, the van der Waals contact distances of α-COPYCL are maintained as such for γ-COPYCL, a typical result for a displacive phase transformation (Buerger, 1951). Indeed none of the intermolecular contacts involving only C or H atoms differs by more than $0.37 \AA$ between the two crystal structures. [A full list of such contacts is given by Clarke (1973)]. In contrast, the intermolecular contacts between Cl and C or H atoms differ by up to 0.9 \AA. The major changes of this type are given in Table 13. It would therefore appear that the packing in both structures is controlled by the interactions between C and H atoms since it is this type of interaction that remains largely unaltered by the phase transformation.

We wish to thank Dr M. Gerloch who originally drew our attention to this problem, Dr J. O. Thomas for providing us with his preliminary results on the phase transformation, Mr J. Cresswell for the figures, and Miss Patricia Brennan for typing. P.J.C. is indebted to the Science Research Council for a studentship during the course of which this work was carried out.

References

Bentley, R. B. (1968). The Magnetic Properties of Some Transition Metal Complexes. Thesis, Victoria Univ. of Manchester.
Bentley, R. B., Gerloch, M., Lewis, J. \& Quested, P. N. (1971). J. Chem. Soc. (A), pp. 3751-3756.

Buerger, M. J. (1951). Phase Transformations in Solids, edited by R. Smoluchowski, J. E. Meyer \& W. A. Weyl, pp. 183-209. New York: John Wiley.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, $180-$ 182.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Oak Ridge National Laboratory. Report ORNL-TM-306.
Clarke, P. J. (1973). Structures of Organic and Organometallic Compounds in Relation to Three Types of SolidState Reaction. Thesis, London Univ.
Clarke, P. J. \& Milledge, H. J. (1975). B31, 1554-1558.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Dornberger-Schiff, K. (1956). Acta Cryst. 9, 593-601.
Dornberger-Schiff, K. (1966). Acta Cryst. 21, 311-322.
Dornberger-Schiff, K. \& Dunitz, J. D. (1965). Acta Cryst. 19, 471-472.
Dornberger-Schiff, K. \& Grell-Niemann, H. (1961). Acta Cryst. 14, 167-177.
Dunitz, J. D. (1957). Acta Cryst. 10, 307-313.
Dunitz, J. D. (1964). Acta Cryst. 17, 1299-1304.
Ferroni, E. \& Bondi, E. (1958). J. Inorg. Nucl. Chem. 8, 458-461.
Gill, N. S. \& Nyholm, R. S. (1961). J. Inorg. Nucl. Chem. 18, 88-97.
Hantzsch, A. (1927). Z. anorg. allgem. Chem. 159, 273-303.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Lonsdale, K., Milledge, H. J. \& Pant, L. M. (1965). Acta Cryst. 19, 827-840.
Mellor, D. P. \& Coryell, C. D. (1938). J. Amer. Chem. Soc. 60, 1786-1787.
Milledge, H. J. (1963). Acta Cryst. 16, 72.
Porai-Koshits, M. A., Atovmayan, L. O. \& Tischenko, G. N. (1960). J. Struct. Chem. pp. 312-316.

Reitzenstein, F. (1894). Liebigs Ann. 282, 267-280.
Thomas, J. O. (1969). The Design, Construction, and Use of a New Type of Liquid Helium Cryostat for X-ray Diffraction Experiments. Thesis, London Univ.
Thomas, J. О. (1972). J. Appl. Cryst. 5, 102-106.
Ubbelohde, A. R. \& Woodward, I. (1946). Proc. Roy. Soc. A 185, 448-465.
Zannetti, R. \& Serra, R. (1960). Gazz. Chim. Ital. 90, 328-336.

[^0]: * Present address: Chemical Crystallography Laboratory, South Parks Road, Oxford OX 1 3QS, England.

